skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Asmerom, Yemane"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The geochemistry of phosphate rocks can provide valuable information on their depositional environment and the redox condition of global oceans through time. Here we examine trace metal concentrations and uranium (δ238U, δ234U) and strontium (87Sr/86Sr) isotope variations of marine sedimentary phosphate rocks and the phosphate-bearing carbonate fluorapatite (CFA) mineral phase, originating from Precambrian to mid-Miocene aged major global phosphate deposits. We find elevated concentrations of several trace elements (Al, V, Cr, Cd, U, Mn, Co, Cu, As, and Rb) in the CFA mineral phase of young phosphate rocks (Miocene to Late Cretaceous) relative to those of older (Devonian to Precambrian) rocks. The δ238U of phosphate rocks of Mid-Miocene to Permian age range from −0.311‰ to 0.070‰, exhibiting a positive fractionation relative to modern seawater (−0.38‰). This is similar to the isotope fractionation reported for carbonate and shale sediments, likely resulting from the reduction of uranium in porewaters during CFA precipitation. Cambrian to Precambrian phosphate rocks have lower δ238U of −0.583‰ to −0.363‰, indicating different depositional redox conditions likely resulting from seafloor anoxia and/or diagenetic modification. The 87Sr/86Sr ratios of phosphate rocks of Cretaceous to Mid-Miocene age generally follow the secular 87Sr/86Sr seawater curve. Phosphate rocks with 87Sr/86Sr that deviate from this curve have characteristic trace metal trends, such as lower Sr/Ca and Sr concentrations, suggesting later diagenetic modification. Older phosphate rocks of Precambrian age are systematically more radiogenic than the expected secular Sr seawater composition at the time of deposition, possibly due to the greater influence of terrestrial input in peritidal zones and/or more pervasive diagenetic modification. Overall, our study reveals connections between U and Sr isotope variations for reconstructing the depositional and diagenetic conditions of global phosphate rock formation through Earth history and the transition to an oxic ocean following the Paleozoic Oxygenation Event. 
    more » « less
  2. The 1257 CE eruption of Mt. Samalas in Indonesia is argued to be the largest of the last two millennia in terms of global volcanic aerosol forcing, with a reduction in insolation of more than 30 W/m2 (Sigl et al., 2015, Nature, 523). Large volcanic eruptions are tied to short-term climatic shifts, including changes to monsoon rainfall (Ridley et al., 2015, Nature Geoscience, 8). In order to investigate the impact of this eruption on the Indian summer monsoon in Nepal, we analyzed at ultra-high resolution the carbon and oxygen isotopes of a fast-growing, precisely-dated aragonite stalagmite from Siddha cave in the Pokhara Valley of central Nepal (28.0˚ N, 84.1˚ E; ~850 m.a.s.l.). We micromilled the stalagmite in ~40 µm-wide traverses during the interval through the Mt. Samalas eruption (a total of 261 analyses). Studies near Siddha cave and in Kathmandu, 130 km to the southeast, reveal that amount effects of oxygen isotopes in precipitation in this region are weak, and so we rely on carbon isotopes as a proxy for rainfall. Carbon isotopes define sinusoids that appear to represent annual cycles of rainfall associated with the summer monsoon and winter dry season. The average magnitude of these cycles is ~0.3 to 0.6‰. While some ambiguities exist, the number of seasonal cycles (18-21) is within error of the years of growth for this interval as determined by U/Th dating (26±8 years). To investigate the impact of the eruption on regional hydroclimate, we detrended the carbon isotope data and then calculated anomalies in the wet and dry seasons relative to the mean of those values. The most prominent feature of the time series is two large positive isotope anomalies separated by a moderate negative isotope anomaly. We interpret these to reflect disruptions to both the monsoon and dry season precipitation regimes by aerosol forcing from Mt. Samalas. If true, then these results reveal somewhat surprising an anomalously wet monsoon season in the first year after the eruption and that seasonal sinusoids return to their pre-eruption pattern after only two years following the eruption. In order to better understand these results, we investigate this interval using the Last Millennium Ensemble, a state-of-the-art suite of climate model simulations conducted by the National Center for Atmospheric Research with the Community Earth System Model. 
    more » « less
  3. Abstract We examined a Late Holocene sea-level stillstand using phreatic overgrowths on speleothems (POS) recovered from Medvjeđa Špilja [Bear Cave] (northern Adriatic Sea) from −1.28 ± 0.15 m below present mean sea level. Different mineralogical analyses were performed to characterize the POS and better understand the mechanisms of their formation. Results reveal that the fibrous overgrowth is formed of calcite and that both the supporting soda straw and the overgrowth have very similar trace element compositions. This suggests that the drip-water and groundwater pool from which the POS formed have similar chemical compositions. Four subsamples were dated by means of uranium-series. We found that ca. 2800 years ago, the relative sea level was stable for about 300 years at a depth of approximately −1.28 ± 0.15 m below the current mean sea level. This finding roughly corresponds with the end of a relatively stable sea-level period, between 3250 and 2800 cal yr BP, previously noted in the southern Adriatic. Our research confirms the presence of POS in the Adriatic region and establishes the Medvjeđa Špilja pool as a conducive environment for calcite POS formation, which encourages further investigations at this study site. 
    more » « less
  4. Abstract We report exceptionally negative δ238U values for spring water (−2.5‰ to −0.8‰) and travertine calcite (−3.2‰ to −1.1‰) from an area where the Jemez lineament intersects the western margins of the Rio Grande rift, west-central New Mexico (southwestern United States). The highest anomalies come from the southern margins of the Valles Caldera and are related to upwelling CO2-charged spring water forming travertine mounds along joints and faults. The anomaly likely occurs due to CO2 lixiviation of uranium in a deep-seated reduced environment where 235U is preferentially leached along a long flow path through Precambrian granitic basement, resulting in spring water with exceptionally low δ238U values inherited by the calcite that precipitated near or at the surface at relatively low temperatures, i.e., ~40 °C (modern temperatures). The lowest δ238U values are preserved in settings where upwelling waters are least diluted by oxidized aquifer groundwaters. Given these low δ238U values in travertine are associated with and possibly indicators of upwelling CO2 related to tectonic and magmatic activity, studies such as ours may be used to identify this association far back in time. 
    more » « less
  5. Cryogenic cave carbonates have been described from several formerly or presently glaciated karst caves. In most of these occurrences, they precipitated as loose grains or aggregates with various morphologies and sizes. Here, we report on a new speleothem type (cryogenic ridges) identified in Sohodoalele Mici Cave (SW Romania) within a large chamber near the entrance shaft. This study was motivated by the presence of a network of calcite ridges over the stalactites’ surface and by the observation that during winter, these speleothems are covered by a thin ice layer. The higher δ18O (−3.5 to –1‰) and δ13C (0 to 7‰) values found in the calcite ridges relative to δ18O (–7.5 to –4‰) and δ13C (–9 to –2‰) values of calcite from the inner stalactite indicate that the ridges are of cryogenic origin and formed during relatively rapid carbonate precipitation associated with evaporative cooling and freezing of the water. Four U-series ages suggest that the stalactites with ridges formed during cold winters of the Holocene, when cave air temperatures dropped below freezing. 
    more » « less
  6. Stalagmites and climate models reveal ITCZ shifts drove concurrent changes in Australian tropical cyclone and monsoon rainfall. 
    more » « less
  7. Modern global sea-level rise is anomalous relative to any natural variability over the past 4000 years. 
    more » « less
  8. Abstract. Close coupling of Iberian hydroclimate and North Atlantic seasurface temperature (SST) during recent glacial periods has been identifiedthrough the analysis of marine sediment and pollen grains co-deposited on thePortuguese continental margin. While offering precisely correlatable records,these time series have lacked a directly dated, site-specific record ofcontinental Iberian climate spanning multiple glacial cycles as a point ofcomparison. Here we present a high-resolution, multi-proxy (growth dynamicsandδ13C, δ18O, and δ234Uvalues) composite stalagmite record of hydroclimate from two caves in westernPortugal across the majority of the last two glacial cycles (∼220ka).At orbital and millennial scales, stalagmite-based proxies for hydroclimateproxies covaried with SST, with elevated δ13C,δ18O, and δ234U values and/or growth hiatusesindicating reduced effective moisture coincident with periods of lowered SSTduring major ice-rafted debris events, in agreement with changes inpalynological reconstructions of continental climate. While in many cases thePortuguese stalagmite record can be scaled to SST, in some intervals themagnitudes of stalagmite isotopic shifts, and possibly hydroclimate, appearto have been somewhat decoupled from SST. 
    more » « less